
G-NetMon: A GPU-accelerated Network Performance Monitoring System

Wenji Wu, Phil DeMar, Don Holmgren, Amitoj Singh
Computing Division, Fermilab

Batavia, IL 60510, USA
E-mail: {wenji, demar, djholm, amitoj}@fnal.gov

Abstract—At Fermilab, we have prototyped a GPU-accelerated
network performance monitoring system, called G-NetMon, to
support large-scale scientific collaborations. In this work, we
explore new opportunities in network traffic monitoring and
analysis with GPUs. Our system exploits the data parallelism that
exists within network flow data to provide fast analysis of bulk
data movement between Fermilab and collaboration sites.
Experiments demonstrate that our G-NetMon can rapidly detect
sub-optimal bulk data movements.

Keywords: GPU, Flow Analysis, Network Performance
Monitoring, High-speed netwworks.

I. FERMILAB G-NETMON SYSTEM DESIGN
Fermilab is the Tier-1 Center for the Large Hadron

Collider’s (LHC) Compact Muon Solenoid (CMS) experiment,
as well as the central data center for several other large-scale
research collaborations. Scientific data (e.g., CMS) dominates
off-site traffic volumes in both inbound and outbound
directions. At Fermilab, we have prototyped a GPU-accelerated
network performance monitoring system (G-NetMon) for our
large-scale scientific collaborations. In this work, we explore
new opportunities in network traffic monitoring and analysis
with GPUs. G-NetMon exploits the inherent data parallelism
that exists within network flow data and uses a GPU to rapidly
calculate transfer rates between Fermilab and collaboration
sites in near real time. G-NetMon aims to quickly detect sub-
optimal data movement for large-scale scientific collaborations.
A sub-optimal bulk data movement is detected if the associated
transfer rates fall below some standard that is either predefined
or provided by other network services.

Our GPU-accelerated network performance monitoring
system is deployed as shown in Figure 1. It receives flow data
from site border routers as well as internal LAN routers. The
routers export NetFlow V5 records. The flow data is complete,
not sampled.

A. System Hardware Configuraton
Our flow-based analysis requires traffic scrutiny on a per-

flow-record basis. Fermilab is the US-CMS Tier-1 Center and
the main data center for a few other large-scale research
collaborations. Every hour, millions of flow records are
generated at Fermilab border routers. Considering the
increasing volume of scientific data created every year, coupled
with the evolution towards to 100 GigE network technologies,
it is anticipated that our network flow data analysis
requirements will be increasing accordingly. Therefore, our G-
NetMon not only needs to handle current network conditions,
but have the capability to accommodate the large growth of
traffic expected in the near future. For now, Fermilab border

routers generate less than 5,000,000 flow records every hour.
Our target is to allow G-NetMon to handle 50,000,000 flow
records per hour.

R&E

Networks

FNAL Site

Border

Routers

CPU

HUB

GPU

NIC

Network Performance

Monitoring System

CPU
CPU

RAM

Tesla C2070

FlowData

Feed

Figure 1 G-NetMon – Deployment

G-NetMon is implemented in a system that consists of two
8-Core 2.4 GHz AMD Opteron 6136 processors, two 1Gbps
Ethernet interfaces, 32 GB of system memory, and one Tesla
C2070 GPU. The Tesla C2070 GPU features the Fermi GPU
architecture [1].

B. System Architecture
The G-NetMon architecture is as shown in Figure 2. The

system consists of a few parts that are executed on either the
host (CPU) or GPU. Based on the CUDA design principle [2],
the parts that exhibit little or no data parallelism are
implemented as sequential CPU threads; the parts that exhibit a
rich amount of data parallelism are implemented as GPU
kernels.

FlowData

Receiver

NetFlow v5

(UDP)

Flow Data

Store
Site Catalog C

P
U

 D
o
m

a
in

G
P

U
 D

o
m

a
in

Site

Registration

Flow Data

Store

Site

Registration

Copy

TransRate

Kernel

Catalog

Kernel

G
P

U

S
ite

 C
a
ta

lo
g

TranRate

Statistics

TranRate

Statistics

NetPerf

Monitoring

Performance

Warning

Figure 2 A G-NetMon – Architecture

B.1 CPU Domain

Three CPU threads are implemented in the CPU domain.

Site Registration Thread: it registers scientific subnets to
our network performance monitoring system. The registered
subnets are stored in the Site Catalog (a data buffer in host
memory), which helps to identify scientific data transfer
between Fermilab and collaboration sites. Large-scale research
efforts like LHC CMS are built upon large, globally distributed
collaborations. However, available computing and networking
resources at different collaboration sites varies greatly. It is
difficult to design machine-learning algorithms to
automatically identify scientific data transfers in terms of
traffic patterns or characteristics. Nevertheless, for a large-scale
scientific application, the collaboration relationships between
research institutions tend to be relatively static. In addition, the
systems and networks assigned to a scientific application at a
site are relatively fixed. Large-scale scientific data movement
usually occurs between some specific subnets at each site.
Therefore, by registering these subnets to our system, we can
easily monitor data transfers between Fermilab and its
collaboration sites through flow analysis of traffic between
those subnets.

FlowData Receiver Thread: a UDP daemon, which
receives NetFlow V5 packets from border routers. The received
flow records are stored in Flow Data Store (a data buffer in
host memory). In the current implementation, Flow Data Store
is designed to hold 50,000,000 flow records. Since a NetFlow
V5 flow record is less than 50 Bytes, these 50,000,000 flow
records require approximately 2.5GB of memory. Processed
flow records in Flow Data Store are periodically cleaned and
stored to disk to create space for subsequent network flow data.

NetPerf Monitoring Thread: the main thread of our
network performance monitoring system. Periodically (each
hour), it copies Site Catalog and Flow Data Store to GPU
memory and launches the corresponding GPU kernels to
calculate the transfer rates between Fermilab and its
collaboration sites. When GPU computation is completed, the
NetPerf Monitoring Thread will synthesize the final results. A
sub-optimal bulk data movement is detected if the associated
transfer rates are below some predefined standard. Considering
that TCP traffic is elastic, we use the statistics of transfer rate
medians as our evaluation criteria. For a given site, network
performance warnings would be issued if the associated
median were less than 1Mbps for two consecutive hours.

B.2 GPU Domain

1) GPU Kernels

In the GPU domain, we have implemented two GPU
kernels, Catalog Kernel and TransRate Kernel.

Catalog Kernel: it builds GPU Site Catalog, a hash table
for registered scientific subnets in GPU memory, from Site
Catalog. TransRate Kernel makes use of GPU Site Catalog to
rapidly assign flow records to their respective subnets by
examining their source or destination IP addresses. To make
the hash table easy to implement and fast to search, all
registered networks are transformed into /24 subnets and then
entered in GPU Site Catalog. For the sake of scientific data
transfer, a /24 subnet is large enough for most collaboration
sites. Any network larger than /24 is divided into multiple
entries in the hash table. Since GPU Site Catalog is mainly
used for lookup operations and is rarely updated, there is no
need to implement locks to protect unsynchronized write

accesses. If any update is necessary, the table is rebuilt from
scratch.

TransRate Kernel: it calculates the transfer rates between
Fermilab and its collaboration sites. TransRate Kernel exploits
the inherent data parallelism that exists within network flow
data. When GPU instantiates TransRate Kernel on a grid of
parallel threads, each thread handles a separate flow record. On
a C2070 GPU, thousands of flow records can be processed
simultaneously. To handle a flow record, a TransRate thread
first attempts to assign the flow record to its respective site and
then calculates the corresponding transfer rates. With a hash of
the /24 subnet of the flow record’s source or destination IP
address, TransRate Kernel looks up the site to which the flow
record belongs in GPU Site Catalog. Because each flow record
includes data such as the number of packets and bytes in the
flow and the timestamps of the first and last packet, calculation
of transfer rate is simple. However, two additional factors must
be considered. First, because a TCP connection is bidirectional,
it will generate two flow records, one in each direction. In
practice, a bulk data movement is usually unidirectional. Only
the flow records in the forward direction reflect the true data
transfer activities. The flow records in the other direction
simply record the pure ACKs of the reverse path and should be
excluded from transfer rate calculations. These flow records
can be easily filtered out by calculating their average packet
size, which is usually small. Second, a bulk data movement
usually involves frequent administrative message exchanges
between the two endpoints. A significant number of flow
records are generated due to these activities. These records
usually contain a small number of packets with short durations;
their calculated transfer rates are generally of low accuracy and
high variability. These flow records are also excluded from our
transfer rate calculation.

We calculate transfer rates (maximum, minimum, average,
median) for each registered site and for each host in a
registered site. To calculate the median statistics, we create an
array of buckets for each host to count transfer rate frequencies.
Each bucket represents a 10kbps interval. To save space, all
transfer rates greater than 100Mpbs are counted in the last
bucket. Therefore, for each host, we maintain a bucket array of
size 10001. A bucket n represents the frequency of flow rates
that fall within the interval [n*10kbps (n+1)*10kbps]. From the
resulting bucket counts we determine the host and site medians.
We use atomic CUDA operations to calculate and store all
transfer rates in order to prevent unsynchronized data accesses
by the threads.

2). GPU Kernel Optimization

The Catalog Kernel is relatively simple, with few
opportunities for optimization. In fact, its functionality could be
included in TransRate Kernel. However, because the overhead
to launch a kernel is negligible [3], we have chosen to
implement it as an independent kernel to preserve a modular
design.

Our TransRate kernel is optimized using various
approaches:
• Register Spilling Optimization. Without this optimization,

a TransRate thread will use 47 registers. These registers
hold compiler-generated variables. Because registers are
in-chip memories that can be accessed rapidly, a single

thread’s performance increases if registers are readily
available. However, when we used the CUDA Occupancy
Calculator [1] to measure SM occupancy with varying
block sizes, to our surprise, the occupancy rates were
unacceptably low (Table 1). At such a low SM occupancy,
the overall GPU performance would be greatly degraded.
The improvement in each single thread cannot make up for
the loss in overall thread parallelism. To raise GPU
occupancy, we limit the maximum number of registers
used by TransRate to 20 by compiling this kernel with the
“-maxrregcount 20” option. As shown in Table 1, this
register spilling optimization is effective, and the best
GPU occupancy achieved as the number of threads per
block is varied is now 100%.

• Shared memory. Shared memories are on-chip memories
and can be accessed at very high speed in a highly parallel
manner. The TransRate kernel makes use of shared
memory as much as possible to accelerate flow data
processing.

• Non-caching Load. Fermi architecture global memory has
two types of loads, caching and non-caching. The caching
load is the default mode. It first attempts to load from L1
cache, then from L2 cache, and finally from the global
memory. The load granularity is 128 bytes. The non-
caching load first attempts to hit in L2, and then the global
memory. Its load granularity is 32 bytes. Our experiments
show that non-caching load can boost the performance by
at least 10%, and so the optimized TransRate kernel uses
non-caching load to access Flow Data Store.

Table 1 SM Occupancy Rates at Different Kernel Block
Sizes

Thread Size per Block 64 128 256 512
SM Occupancy Rates @

Register/Thread=47 33% 42% 33% 33%

SM Occupancy Rates @
Register/Thread=20 33% 67% 100% 100%

II. EXPERIMENTAL EVALUATION

A. Performance Evaluation
At present, Fermilab border routers produce fewer than

5,000,000 flow records in an hour. However, our G-NetMon
system is designed to handle a maximum load of 50,000,000
flow records per hour. To evaluate the capabilities and
performance of our system at such a network load, we collected
more than a day’s flow records from the border routers and fed
G-NetMon with 50,000,000 flow records. FlowData Receiver
Thread receives these flow records and stores them in Flow
Data Store. We also select the top 100 /24 scientific subnets
that transfer to and from Fermilab in terms of traffic volume,
and register them with Site Catalog.

To calculate transfer rates between Fermilab and
collaboration sites, it is first necessary to assign flow records to
their respective sites. G-NetMon implements a hash table to
perform this function. We have also implemented a Non-Hash-
Table method (i.e., sequential search) in which all of the
registered scientific subnets are maintained in a sequential list.

To categorize a flow record, the TransRate kernel searches the
list one by one until a matching site, or none, is found. The G-
NetMon variant with the Non-Hash-Table method is termed as
NHT-G-NetMon

A.1 GPU vs. CPU
 In order to evaluate how GPU can accelerate network flow
data processing in high-bandwidth network environments, we
compare G-NetMon with its corresponding CPU
implementations. We implemented two CPU variants, which
are termed H-CPU and NH-CPU, respectively. Like G-
NetMon, H-CPU applies a hash table mechanism to rapidly
assign flow records to their respective sites and then calculates
the corresponding transfer rates. In contrast, NH-CPU
implements a similar Non-Hash-Table method (sequential
search) as NHT-G-NetMon, in which all of the registered
scientific subnets are maintained in a sequential list. To assign
a flow record, CPU searches the list one by one until a
matching site, or none, is found. We ran each of H-CPU and
NH-CPU on a single 2.4 GHz AMD Opteron 6136 core, with
the same set of data as used above. We make the comparisons
of G-NetMon vs. H-CPU and NHT-G-NetMon vs. NH-CPU.
The results are shown in Figure 3. It takes H-CPU 4916.67 ms
to handle 50,000,000 flow records; in contrast, G-NetMon
requires 900ms. For the non-hash-table variants, NH-CPU and
NHT-G-NetMon take 36336.67 ms and 1098.23 ms,
respectively. The comparisons clearly show that GPU can
significantly accelerate the flow data processing, by a factor of
5.38 (G-NetMon vs. H-CPU), or by a factor of 33.08 (NHT-G-
NetMon vs. NH-CPU). The reason that we present the
comparison of GPU vs. CPU for the non-hash-table
implementations is because many network applications feature
a similar sequential search computation pattern as our non-
hash-table implementations. For example, a network security
application needs to examine each packet or flow with security
rules one by one. The experiment results show GPU can
significantly accelerate the data processing.

Figure 3 G-NetMon vs. CPU

A.2 Receiving Flow Records
 G-NetMon receives NetFlow V5 packets from border routers
via UDP. The received flow records are stored in Flow Data
Store. A NetFlow V5 flow record is 48 bytes. A 1500-byte
UDP packet, the largest allowed by standard Ethernet at the
network, can transmit at most 30 flow records. Our G-NetMon

system is designed to handle a maximum load of 50,000,000
flow records per hour. Therefore, the FlowData Receiver
thread needs to handle at least 463 packets per second, which
amounts to an average traffic load of 5.56Mbps. Our G-
NetMon system can easily handle such a traffic load. However,
because the flow records are transmitted via UDP, if CPU is
busy with other tasks and the FlowData Receiver thread is not
scheduled to handle the NetFlow traffic in time, the incoming
packets can be dropped when the UDP receive buffer is full.
We have run experiments to verify this scenario. In the
experiments, the FlowData Receiver thread was assigned to
share a core with a CPU-intensive application and the UDP
receive buffer size was set to 4MB. We then sent it UDP traffic
at varying rates, ranging from 100Mbps to 1Gbps, for 0.5
seconds. When the UDP traffic rates reached 500Mbps or
above, serious packet loss would occur. We repeated the above
experiments with the FlowData Receiver thread assigned a
dedicated core. No packet loss was detected. Therefore, to
avoid the situation of NetFlow packets being dropped, G-
NetMon assigns a dedicated core for the FlowData Receiver
thread to handle NetFlow traffic.

B. Network Performance Monitoring
 We have registered 100 /24 scientific subnets that transfer to
and from Fermilab in G-NetMon. G-NetMon monitors the bulk
data movement status between Fermilab and these subnets by
calculating the corresponding data transfer statistics every hour.
G-NetMon calculates the transfer rates (maximum, minimum,
average, median) for each registered site and for each host in a
registered site. Figure 4 gives the data transfer rates in an hour
between Fermilab and a collaboration site.
 A sub-optimal bulk data movement is detected if the
associated transfer rate falls below a predefined standard.
Considering that TCP traffic is elastic and network conditions
are volatile, we use the statistics of transfer rate medians as our
evaluation criteria. For a given site, network performance
warnings would be issued if the associated median were less
than 1Mbps for two consecutive hours.
 To evaluate the effectiveness of G-NetMon in detecting sub-
optimal bulk data movements, we investigated the G-NetMon
warnings for a period of two weeks. During this period, G-
NetMon issued performance warnings for 7 sites in total (there
were multiple warnings for the same sites). For those sites that
G-NetMon issued warnings, we contacted their network
administrators to conduct end-to-end performance analysis.

Five sites responded to our requests. The end-to-end
performance analysis indicated poor network conditions
between these sites and Fermilab. To our surprise, one site in
Greece is even connected to the outside world with a 100 Mbps
link. The investigation of these warnings demonstrated that our
G-NetMon can effectively detect sub-optimal bulk data
movements in a timely manner. G-NetMon can detect a sub-
optimal bulk data movement in two hours.

III. CONCLUSION & DISCUSSION
 At Fermilab, we have prototyped a GPU-accelerated network
performance monitoring system for large-scale scientific
collaborations, called G-NetMon. Our system exploits the
inherent data parallelism that exists within network data flows
and can rapidly analyze bulk data movements between
Fermilab and its collaboration sites. Experiments demonstrate
that our G-NetMon can detect sub-optimal bulk data movement
in time.
 The main purpose of this work is to explore new
opportunities in network traffic monitoring and analysis with
GPUs. The experiment results show that GPU can significantly
accelerate the flow data processing, by a factor of 5.38 (G-
NetMon vs. H-CPU), or by a factor of 33.08 (NH-S-NC-GPU
vs. NH-CPU). At present, G-NetMon is designed to detect sub-
optimal bulk data movements. In the future, we will enhance it
with security features. To implement security features, G-
NetMon needs to examine flow records with security rules one
by one in real time or semi-real time, which require more
computation capabilities. The computation pattern of
examining flow records with security rules one by one is
similar to that of the non-hash-table implementations discussed
in the paper, in which GPU can significantly accelerate the
flow data processing.

REFERENCES

[1] www.nvidia.com
[2] D. B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach, Morgan Kaufmann Publishers
Inc. ISBN: 0123814723 9780123814722

[3] S. Han, K. Jang, K. Park, S. Moon, “PacketShader, a GPU-
Accelerated Software Router,” In Proceedings of SIGCOMM’10,
New Delhi, India.

Figure 4 Transfer rates between Fermilab and a Collaboration Site

